skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Moore, Nicholas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this work, we develop a computational method to provide real-time detection for water bottom topography based on observations on surface measurements, and we design an inverse problem to achieve this task. The forward model that we use to describe the feature of the water surface is thetruncated Korteweg-de Vries equation, and we formulate the inversion mechanism as an online parameter estimation problem, which is solved by a direct filter method. Numerical experiments are carried out to show that our method can effectively detect abrupt changes of water depth. 
    more » « less
  2. A ubiquitous arrangement in nature is a free-flowing fluid coupled to a porous medium, for example a river or lake lying above a porous bed. Depending on the environmental conditions, thermal convection can occur and may be confined to the clear fluid region, forming shallow convection cells, or it can penetrate into the porous medium, forming deep cells. Here, we combine three complementary approaches – linear stability analysis, fully nonlinear numerical simulations and a coarse-grained model – to determine the circumstances that lead to each configuration. The coarse-grained model yields an explicit formula for the transition between deep and shallow convection in the physically relevant limit of small Darcy number. Near the onset of convection, all three of the approaches agree, validating the predictive capability of the explicit formula. The numerical simulations extend these results into the strongly nonlinear regime, revealing novel hybrid configurations in which the flow exhibits a dynamic shift from shallow to deep convection. This hybrid shallow-to-deep convection begins with small, random initial data, progresses through a metastable shallow state and arrives at the preferred steady state of deep convection. We construct a phase diagram that incorporates information from all three approaches and depicts the regions in parameter space that give rise to each convective state. 
    more » « less
  3. Many studies were conducted to find possible strategies for reducing the urban heat island (UHI) effect during the hot summer months. One of the largest contributors to UHI is the role that paved surfaces play in the warming of urban areas. Solar-reflective cool pavements stay cooler in the sun than traditional pavements. Pavement reflectance can be enhanced by using a reflective surface coating. The use of heat-reflective coatings to combat the effects of pavements on UHI was pre-viously studied but no consistent conclusions were drawn. To find a conclusive solution, this work focuses on the abilities of heat-reflective pavement coatings to reduce UHI in varying weather conditions. Within this context, both concrete and asphalt samples were subject to a series of per-formance tests when applied to a heat-reflective coating, under the influence of normal, windy, and humid conditions. During these tests, the samples were heated with a halogen lamp and the surface temperature profile was measured using an infrared thermal camera. The air temperature was recorded with a thermometer, and the body temperature at multiple depths of the samples was measured using thermocouples. The results from these tests show that the effectiveness of the heat-reflective coating varies under different weather conditions. For instance, the coated samples were about 1 °C cooler for concrete and nearly 5 °C cooler for asphalt, on average. However, this temperature difference was reduced significantly under windy conditions. As such, the findings from this work conclude that the heat-reflective coatings can effectively cool down the pavement by increasing the surface albedo, and thus might be a viable solution to mitigate UHI impacts in the city/urban areas. 
    more » « less
  4. Many studies were conducted to find possible strategies for reducing the urban heat island (UHI) effect during the hot summer months. One of the largest contributors to UHI is the role that paved surfaces play in the warming of urban areas. Solar-reflective cool pavements stay cooler in the sun than traditional pavements. Pavement reflectance can be enhanced by using a reflective surface coating. The use of heat-reflective coatings to combat the effects of pavements on UHI was pre-viously studied but no consistent conclusions were drawn. To find a conclusive solution, this work focuses on the abilities of heat-reflective pavement coatings to reduce UHI in varying weather conditions. Within this context, both concrete and asphalt samples were subject to a series of per-formance tests when applied to a heat-reflective coating, under the influence of normal, windy, and humid conditions. During these tests, the samples were heated with a halogen lamp and the surface temperature profile was measured using an infrared thermal camera. The air temperature was recorded with a thermometer, and the body temperature at multiple depths of the samples was measured using thermocouples. The results from these tests show that the effectiveness of the heat-reflective coating varies under different weather conditions. For instance, the coated samples were about 1 °C cooler for concrete and nearly 5 °C cooler for asphalt, on average. However, this temperature difference was reduced significantly under windy conditions. As such, the findings from this work conclude that the heat-reflective coatings can effectively cool down the pavement by increasing the surface albedo, and thus might be a viable solution to mitigate UHI impacts in the city/urban areas. 
    more » « less
  5. The fungus Candida albicans is the most common cause of yeast infections in humans. Like many other disease-causing microbes, it releases several virulent proteins that invade and damage human cells. This includes the peptide candidalysin which has been shown to be crucial for infection. Human cells are surrounded by a protective membrane that separates their interior from their external environment. Previous work showed that candidalysin damages the cell membrane to promote infection. However, how candidalysin does this remained unclear. Similar peptides and proteins cause harm by inserting themselves into the membrane and then grouping together to form a ring. This creates a hole, or ‘pore’, that weakens the membrane and allows other molecules into the cell’s interior. Here, Russell, Schaefer et al. show that candidalysin uses a unique pore forming mechanism to impair the membrane of human cells. A combination of biophysical and cell biology techniques revealed that the peptide groups together to form a chain. This chain of candidalysin proteins then closes in on itself to create a loop structure that can insert into the membrane to form a pore. Once embedded within the membrane, the proteins within the loops rearrange again to make the pores more stable so they can cause greater damage. This type of pore formation has not been observed before, and may open up new avenues of research. For instance, researchers could use this information to develop inhibitors that stop candidalysin from forming chains and harming the membranes of cells. This could help treat the infections caused by C. albicans. 
    more » « less
  6. Abstract Early research in aerodynamics and biological propulsion was dramatically advanced by the analytical solutions of Theodorsen, von Kármán, Wu and others. While these classical solutions apply only to isolated swimmers, the flow interactions between multiple swimmers are relevant to many practical applications, including the schooling and flocking of animal collectives. In this work, we derive a class of solutions that describe the hydrodynamic interactions between an arbitrary number of swimmers in a two‐dimensional inviscid fluid. Our approach is rooted in multiply‐connected complex analysis and exploits several recent results. Specifically, the transcendental (Schottky–Klein) prime function serves as the basic building block to construct the appropriate conformal maps and leading‐edge‐suction functions, which allows us to solve the modified Schwarz problem that arises. As such, our solutions generalize classical thin aerofoil theory, specifically Wu's waving‐plate analysis, to the case of multiple swimmers. For the case of a pair of interacting swimmers, we develop an efficient numerical implementation that allows rapid computations of the forces on each swimmer. We investigate flow‐mediated equilibria and find excellent agreement between our new solutions and previously reported experimental results. Our solutions recover and unify disparate results in the literature, thereby opening the door for future studies into the interactions between multiple swimmers. 
    more » « less